Research Areas of the Graduate Faculty

Sharon J. Nieter Burgmayer

""

W. Alton Jones Professor of Chemistry and Dean of Graduate Studies
Inorganic and Bioinorganic Chemistry
Ph.D. University of North Carolina, Chapel Hill

Research in the Burgmayer labs involves two areas of bioinorganic chemistry. One project is focused on modeling the catalytic site of the molybdenum enzymes. 这些酶广泛分布在自然界中,它们进行氧化还原反应,对从细菌到人类的生物体的健康至关重要. 催化单元——钼辅因子——有几个氧化还原活性部分:二噻吩, the pterin and the molydenum. 这个项目的目标是了解这三个氧化还原单元是如何影响催化功能的. A second project involves the study of ruthenium complexes that bind and can damage DNA. These projects involve both inorganic and organic syntheses, many of which are performed under inert atmosphere environments. Chemical reactivity is studied by spectroscopic analysis, such as FT-NMR, FT-IR, UV-vis, and fluorescence, and electrochemical characterization within the Bryn Mawr chemistry department. Certain projects require other techniques, such as structure determination by x-ray crystallography, EPR or MCD, that are accomplished through collaborations with researchers at other institutions.

Michelle M. Francl

""

Professor of Chemistry
Computational and Theoretical Physical Chemistry
Ph. D. University of California, Irvine

Francl教授致力于开发利用计算方法研究化学系统的新方法, as well as in the application of theoretical models to problems of interest in organic, inorganic and biological systems. 一个例子是[n]莫比乌斯烯,一种类似莫比乌斯带的浓缩芳香分子. Larger molecules are less strained than their smaller counterparts, but all show a counterintuitive localization of the twist. 人们可以想象,如果扭曲均匀地分布在分子周围,分子的张力就会小一些. What is the impetus for the localization? What are the consequences for the molecular reactivity? 这些问题的答案可以通过将计算化学与少量的拓扑学和大量的微分几何相结合而找到. Francl教授的研究小组正在采取跨学科的方法来解决这个问题和相关问题.

Jonas I. Goldsmith

""

Associate Professor of Chemistry
Physical Chemistry
Ph.D. Cornell University

The research program in the Goldsmith labs combines the techniques of inorganic, 物理和合成化学开发和研究新的过渡金属配合物纳米结构. 电化学和光谱技术用于探测过渡金属配合物与表面的相互作用,并开发包括纳米电子学和太阳能转换在内的应用. 合成了双功能配体,其中每个配体的芳香族部分与碳表面有π堆积相互作用. 电化学技术包括循环伏安法和电化学石英晶体微天平(EQCM)的使用来研究热力学, kinetics and dynamics of the adsorption process. Investigations of cobalt, 铑和铱配合物用于制造太阳能制氢的电子继电器.

Yan Kung

""

Assistant Professor of Chemistry
Biological Chemistry
Ph.D. Massachusetts Institute of Technology

Kung实验室采用多种生化技术结合x射线晶体学来了解酶的结构和功能之间的联系.  一个主要的研究主题是研究与具有医学或工业重要性的分子的生物合成有关的酶, 重点关注生物途径中的酶,这些酶可以构建用作先进生物燃料或药物靶标的分子. After first gaining a deep molecular understanding of how these enzymes work, 然后,我们将利用这一见解进行蛋白质的合理设计和工程,这些蛋白质具有自然界中没有的更理想的功能.

Bill Malachowski

""

Professor and Chair of Chemistry
Organic Chemistry
Ph.D. University of Michigan

我们的研究兴趣从传统领域延伸到有机化学领域, 如合成反应发展和天然产物合成到生物有机化学, including enzyme inhibitor design, synthesis and testing. In all these fields, our primary laboratory activities involve organic synthesis or constructing molecules.  There are currently two active projects in the group: indoleamine 2,3-dioxygenase (IDO) inhibitor design and synthesis 通过连续的Birch还原-烯丙基化和Cope重排合成天然产物.  这两个项目的最终目标是开发治疗各种疾病的新疗法, most notably cancer and infectious diseases.

Patrick R. Melvin

Melvin research image

Assistant Professor of Chemistry
Organic Chemistry
Ph.D. Yale University

梅尔文实验室的研究将集中在有机方法论和有机金属化学上. 第一个项目将集中于开发用于过渡金属催化的辅助配体(见图), left), 第二部分将研究有机氟化合物的合成方法(见图2), right). 有机金属化学继续革新有机化学家处理合成挑战的方式, yet limitations remain.  To this end, the development of improved catalytic systems is vital. 通过设计新颖的碳羰基(CDC)配体并与镍中心结合, 我们的目标是突破金属催化方法的界限,开辟新的途径来挑战键的形成. Ultimately, 这些Ni配合物将应用于与药物相关的反应,以产生更有效的方法来合成至关重要的化合物. Meanwhile, 氟化项目将使学生接触到试剂和方法开发的严格性. 氟仍然是一种令人难以置信的多用途元素,可以彻底改变分子的许多生物相关特性. However, installing fluorine into organic compounds is particularly challenging. 我们计划通过开发改进的脱氟试剂(氧原子交换氟)来解决这个问题。. Given the prevalence of fluorine in medical research, 在这一领域的潜在合作将显示学生的贡献可以在其他科学领域带来的直接好处.

Ashlee M. Plummer

Assistant Professor of Chemistry
Biological Chemistry
Ph.D. Johns Hopkins University

Ashlee Plummer research

The Plummer lab concentrates on the functional, computational, 以及在细菌广泛毒力中起作用的细菌膜蛋白的结构表征. 细胞膜是磷脂和膜蛋白令人惊讶的复杂混合物,这些膜包围着细胞,形成了抵御外部威胁的保护屏障. 膜内的蛋白质在许多至关重要的过程中起作用,这些蛋白质的功能障碍与无数疾病有关, including atherosclerosis, cancer, and neurodegenerative disorders. Our work combines several different experimental techniques, including in vitro biochemical assays, structural biology-based studies, cell-based assays, 通过计算模拟来了解1)这些蛋白质是如何工作的2)它们是如何与周围的脂质双分子层相互作用的.